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Abstract
Superperiodic patterns extending over a large distance in a nanographene sheet
observed using a scanning tunnelling microscope are discussed in terms of the
interference of electronic wavefunctions. The period and the amplitude of the
oscillations decrease spatially in one direction. We explain the superperiodic
patterns with a static linear potential, theoretically. In the k · p model,
the oscillation period decreases, and agrees with experiments. The spatial
difference of the static potential is estimated as 1.3 eV for 200 nm in distance,
and this value seems to be reasonable preserving for the potential difference
under the action of perturbations,for example, phonon fluctuations and impurity
scatterings. It turns out that the long-distance oscillations arise from the band
structure of the two-dimensional graphene sheet.

1. Introduction

Nanographene sheets are attractive materials, because their magnetic and transport properties
show novel and peculiar properties, originating from nonbonding states localized at the zigzag
edges [1, 2]. Theoretical works [2–5] have been performed to clarify the mechanisms of
the unique magnetism. It has been found that the A–B stacking and the presence of the
localized electronic spins originating from the open-shell nature are favourable conditions for
the magnetism.

On the other hand, direct observation using a scanning tunnelling microscope (STM) is a
powerful method for structural analysis (for example, the presence of a single nanographene
sheet has been observed using a STM [6]) as well as for investigation of electronic properties.
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The interlayer distance of a single nanographene sheet on a highly oriented pyrolytic
graphite (HOPG) substrate has been found to be about 0.35–0.37 nm and this is larger than that
for bulk material [6]. In a recent study, we have found superperiodic patterns with extremely
long periodicity in STM images of a nanographene sheet which varies spatially [7]. In this
letter, we give an explanation for this novel result in terms of the interference of electronic
wavefunctions.

In order to understand the origins of the long-distance oscillations which were observed,
we will make a comparison with the theoretical electron densities using the model of a free
electron confined within an infinite square well, and also using the k · p model [8, 9] for the
two-dimensional graphene sheet. One of the present authors has used the model to explain
the multi-channel Kondo effect [10] and the Cooper pair propagation [11] in metallic carbon
nanotubes. In the graphene sheets, superperiodic patterns in STM images due to the Moiré
origins for the A–B stacking [12] and structural deformations [13] have been reported in the
literature. However, the observed superperiodic patterns with quite long periods over 10 nm
seem not to arise from the Moiré mechanism, and our finding calls for new interpretations.
We assume the presence of a static potential with a linear decrease in one direction. The
calculated local electron density will be compared with the experiments. We will clarify that
the long-distance oscillations are due to the presence of electrons with the band structure of a
two-dimensional graphene sheet.

This letter is organized as follows. In section 2, the experimental results are briefly
reviewed. In section 3, calculations using the free electron model are compared with
experiments. In section 4, the analysis with the k · p model is performed. The letter is
closed with a summary in section 5.

2. STM observations

In this section, the experimental data are briefly reviewed. In figure 1, an STM image of the
graphene sheet with a necktie shape is shown. The detail will be published elsewhere. The
distance between the graphene necktie and the substrate is over 0.8 nm, suggesting that it
consists of a stacking of two graphene layers, which interact weakly with the HOPG substrate.
Interestingly, the period and the amplitude of the oscillations decrease from the top to the
bottom along the graphene necktie. The oscillation period is one order of magnitude larger
than that of the Moiré pattern due to stacking [12],and therefore this possibility can be excluded.
We can assume effects of long-distance periodic structural deformations [13] in the graphene
surface or interference effects of electronic wavefunctions.

We have also observed that the oscillation period becomes longer on placing a
nanographene flake on the graphene necktie, as shown in figure 2. The size of the flake is
about 10 nm in width and 100 nm in length. Similar sizes of the nanographene flakes have
been assumed in the model calculations [4]. The oscillation period seems to be doubled in
the upper region of the necktie after addition of one flake. The oscillation below the flake
seems to be only slightly modified by the flake. Such an effect on the oscillations cannot be
explained by some structural modulations. Therefore, the oscillation patterns could be the
effect of interference of the electronic wavefunctions in the graphene surface.

3. Free electron model

We will characterize the interference patterns theoretically. The two-dimensional coordinate
is defined such that the y-axis is along the long direction of the graphene necktie. The x-
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Figure 1. A STM image of the superperiodic pattern on a necktie-shaped graphene plate on a HOPG
substrate. The observation at room temperature and under atmospheric pressure was carried out
under the following conditions: the bias voltage V = 200 mV and the current I = 0.7 nA.

Figure 2. A STM image of the superperiodic pattern on the necktie-shaped graphene sheet observed
in figure 1 after a nanographene flake is placed on it.

axis is perpendicular to the y-axis. By assuming an electric static potential −Fy which is
proportional to the y-axis coordinate, and a confinement effect due to the well-shaped potential
within −d/2 < x < d/2, we obtain the Schrödinger equation:[

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ Vwell(x) − Fy

]
ψ(x, y) = Eψ(x, y), (1)

where Vwell(x) is a well potential with infinite depth. The electron density with the energy E
is written as

|ψ(x, y)|2 =
∑

n

an|ψx(En)ψy(E − En)|2, (2)

where an is the coefficient of occupancy with the quantum number n, ψx(En) is the solution
in the well in the x-direction, and ψy(E − En) is the solution for the potential term −Fy. The
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Figure 3. A two-dimensional plot of the electron density calculated using the free electron model.
The bottom and left axes are shown in arbitrary units. The quantum number n = 4 is taken for the
standing wave within the infinite well; −0.5 < x < 0.5 with d = 1.

solution in the well is

ψx (En) =




A cos

(
nπx

d

)
for odd n

A sin

(
nπx

d

)
for even n,

(3)

with En = π2h̄2n2/2md2 and A = √
2/d. The solution for the linear potential is

ψy(E − En) = �

[
−

(
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)1/3(
x +

E

F
− En

F

)]
, (4)

where �(x) is the Airy function

�(x) = 1√
π

∫ ∞

0
cos

(
u3

3
+ ux

)
du. (5)

The local density of states of electrons with an = 1 only for n = 4 is shown in figure 3.
We can explain the decrease of the oscillation period and the amplitude along the y-direction
theoretically. This property arises from the form of the Airy function. As the coordinate y
becomes larger, the potential becomes deeper. This results in increase of the effective kinetic
energy, and thus the wavenumber of the oscillation becomes larger. There is a standing wave
in the x-direction. However, we cannot explain the details of oscillations in the x-direction of
figure 1; possibly they are caused by the effects of the complex shape of the boundary in the
graphene necktie.

Even though the oscillation in the well is uniform spatially, we can compare the oscillation
patterns in the y-direction at least. Figure 4 shows a comparison with the experiment where
the peak positions along the long axis of the necktie are plotted. The decrease of the amplitude
of the theoretical curve seems more rapid than that of the experimental data. The strength of
the static potential is F = 5.26 × 10−6 eV nm−1, using the free electron mass. The potential
variation over the distance 200 nm is 1.1 × 10−3 eV, and this is quite small. Phonon fluctuation
effects or the presence of impurities can override such a small potential change. This difficulty
might be due to the assumption of the free electron model of this section. The exact solution
using the Airy function for the Schrödinger equation with a linear potential is known from
textbooks on quantum mechanics [14], and the comparison with this simple textbook result
has been our main interest in this section.
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Figure 4. Comparison of the electron wave patterns found from the STM and the free electron
theory. Experimental peak positions along the perpendicular direction of figure 1 are plotted as
diamonds. The results of the fitting by the one-dimensional free electron model are shown by
triangles.

4. Continuum k · p model

In order to substantiate the analysis of the interference patterns, we give a comparison with the
calculation of the model for the graphene plane. Here, we use the continuum k ·p model [8, 9].
The Hamiltonian around the K -point with the linear potential −Fy is

H =
( −Fy −iγ ∂

∂x − γ ∂
∂y

−iγ ∂
∂x + γ ∂

∂y −Fy

)
, (6)

where γ ≡ (
√

3/2)aγ0, a is the bond length, and γ0 is the hopping integral for neighbouring
carbon atoms. This model is solved and the infinite-well potential Vwell(x) as used in the
previous section is used. The Schrödinger equation H� = E� gives an oscillating solution:

� = 2A

(
sin

( En x
γ

)
sin

[
1
γ

(
Ẽ y + 1

2 Fy2
)]

−i cos
( En x

γ

)
cos

[
1
γ

(
Ẽ y + 1

2 Fy2
)]

)
, (7)

where En = nπγ/d and Ẽ = E − En. The electron density at the A-sublattice point is
calculated as

|ψA(RA)|2 = 4A2 sin2

(
nπx

d

){
1 + cos[(K − K ′) · RA] sin

[
2

γ

(
Ẽ y +

1

2
Fy2

)]}
(8)

where RA is the lattice point of the A sublattice, K and K ′ are the K - and K ′-points in the
wavenumber space. We pay particular attention to the long-period oscillating component:

sin2
(

nπx

d

)[
constant + sin

(
Fy2

γ
− 2nπ

d
y

)]
, (9)

where we take E = 0 at the Fermi energy. This functional form for the quantum number
n = 4 is plotted in figure 5 with the assumption d = 1. The amplitude is spatially constant,
and the oscillation period becomes smaller as y becomes larger. We can explain the decrease
of the oscillation period found in the experiments of figure 1, although a uniform array for
the standing wave would be the result of the simplified theory and this is in contrast with the
observations.
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Figure 5. A two-dimensional plot of the electron density calculated using the k · p model. The
bottom and left axes are shown in arbitrary units. The quantum number n = 4 is taken for the
standing wave within the infinite well; −0.5 < x < 0.5 with d = 1.

Figure 6. Comparison of the electron wave patterns from the STM and thek·p model. Experimental
peak positions along the perpendicular direction of figure 1 are plotted as diamonds. The results of
the fitting by the long-distance envelope functional form derived from the k · p model are shown
by squares.

The peak positions of the electron density in the long direction of the graphene necktie
of figure 1 are plotted in figure 6, and a comparison with the result of equation (9) is given.
The slight decrease found in the experiments cannot be reproduced by the result from the k · p
model. However, the decrease of the oscillation period agrees fairly well with the experiments.
The fitting gives a parameter of the potential gradient of F = 6.49 × 10−3 eV nm−1. The
total potential variation over the distance 200 nm becomes 1.3 eV. Such a magnitude of the
potential change would survive thermal lattice fluctuations and can really exist in experiments.
The present result by no means implies that the wavefunctions observed with superperiodic
amplitudes are those of the electrons which have the energy levels of the graphene plane.

5. Summary

Superperiodic patterns in a nanographene sheet observed using a STM can be explained with
two models of electronic wavefunctions in terms of the interference. First, the experimental
results have been briefly introduced. The period and the amplitude of the oscillations decrease
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spatially in one direction—along the long direction of the graphene necktie. The patterns are
superperiodic, and the period is one order of magnitude longer than that of the well-known
Moiré pattern observed in A–B stacked graphite systems. This is a novel finding in our
experiments.

Next, theoretical characterizations have been reported. We have explained the interference
patterns with the static linear potential by using a free electron model and also by using the
continuum k · p model. In the free electron model, we have derived the decrease of the
oscillation period and the amplitude along the decreasing direction of the linear potential.
However, the strength of the linear potential turned out to be unrealistically small. In the k · p

case, the oscillation period decreases, and the amplitude is constant. The spatial difference
of the static potential is estimated as 1.3 eV for the distance 200 nm, and this value seems
to be reasonable for preserving the potential difference under the action of perturbations, for
example, phonon fluctuations and impurity scatterings. It turned out that the long-distance
oscillations arose from electrons with the band structures of the two-dimensional graphene
sheet.
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